Measuring disease occurrence & association

Slides developed by Madhukar Pai, MD, PhD
Email: madhukar.pai@mcgill.ca

Lecture adapted and presented by Ngozi Erondu MPH, PHD
Email: Ngozierondu@gmail.com
Objectives

- Define commonly used terms and concepts in measuring and estimating disease occurrence and association
- Simplify interpretation of these measurements
- Provide examples of correct reporting of these measurements and epidemiological information
The concept of ‘Cohort’

- Derived from Latin word ‘cohorts’ meaning enclosure, company, or crowd

- An epidemiological cohort is a group of people in a defined population that with something in common, such as
 - Geography (E.g. country, city)
 - Exposure (E.g. behavior such as smoking)
 - Outcome (E.g. disease such as lung cancer)
 - Occupation (e.g. Health care workers)
Cohort

Group of interest (e.g. smokers) Follow over time
Comparison group (e.g. non-smokers) Follow over time

Compare outcomes
Morbidity and mortality

- **Morbidity** - any departure, subjective or objective, from a state of physiological or psychological well-being. It encompasses disease, injury, and disability.

- **Mortality** - is related to the number of deaths caused by the health event under investigation. It can be communicated as a rate or as an absolute number. A mortality rate is a measure of the frequency of occurrence of death in a defined population during a specified interval.

Both can be represented or estimated using different measures

Source: Centers for Disease Control and Prevention (CDC), Principles of Epidemiology and public health, 3rd Edition
Epidemiology is about identifying associations between exposures and outcomes. To identify any association, exposures and outcomes must first be measured in a quantitative manner. Then rates of occurrence of events are computed. These measures are called “measures of disease frequency.” Once measured, the association between exposures and outcomes are then evaluated by calculating “measures of association or effect.” Finally, the impact of removal of an exposure on the outcome is evaluated by computing “measures of potential impact.” In general, measures of disease frequency are needed to generate measures of association, and both these are needed to get measures of impact. There is some overlap between these measures, and terminology is poorly standardized.
Rates, Ratios, Proportions

- Three general classes of mathematical parameters.

- Often used to relate the number of cases of a disease [numerator] or health outcome to the size of the source population [denominator] in which they occurred.

- Numerator (“case”) has to be defined
 - Denominator (“population size”) has to be defined
 - Epidemiologists have been referred to as “people in search of the denominator”!
Ratio

- Obtained by dividing one quantity by another. These quantities may be related or may be totally independent.

- Usually expressed as: \(\frac{x}{y} \times 10^n \)

Example: Number of stillbirths per thousand live births.

\[\frac{\text{# stillbirths}}{\text{# live births}} \times 1000 \]

- “Ratio” is a general term that includes Rates and Proportions.

- Dictionary: “The value obtained by dividing one quantity by another.” [Porta 2008]
Proportion

- A ratio in which the numerator (x) is included in the denominator (y)

Expressed as: \[
\frac{x}{y} \times 10^n
\]

where, \(10^n\) is often 100.

Example: The number of fetal deaths out of the total number of births.

\[
\frac{\text{# of fetal deaths}}{\text{live births + fetal deaths}} \times 100
\]

Answer often read as a percent.

Dictionary: “A type of ratio in which the numerator is included in the denominator.” [Porta 2008]
Risk

Probability that an individual with certain characteristics such as: Age, Race, Sex

will experience a health status change over a specified follow-up period (i.e. risk period)

Dictionary: “Probability that an event will occur within a stated period of time.” [Porta 2008]

\[0 \leq \text{RISK} \leq 1 \]

\[0\% \leq \text{percentage} \leq 100\% \]

Assumes:
- Does not have disease at start of follow-up.
- Does not die from other cause during follow-up (no competing risks).

Risk is often used for prediction at the individual level
Rate

- A measure of how quickly something of interest happens *(time is automatically captured)*

- Expressed as: \[\frac{x}{y} \times 10^n \]

Example: The number of new cases of Parkinson’s disease which develops per 1,000 person-years of follow-up.

\[
\frac{\text{# of new cases of Parkinson's disease}}{\text{Total time disease - free subjects observed}} \times 1000
\]

- Time is already in the denominator
- Place and population must be specified for each type of rate.
- In a rate, numerator is not a subset of the denominator
- **Rate is not a proportion (and cannot be a %)**

Kleinbaum et al. ActivEpi
AN OVERVIEW OF MEASUREMENTS IN EPIDEMIOLOGY [VER 3, 2007]

Epidemiology is about identifying associations between exposures and outcomes. To identify any association, exposures and outcomes must first be measured in a quantitative manner. Then rates of occurrence of events are computed. These measures are called “measures of disease frequency.” Once measured, the association between exposures and outcomes are then evaluated by calculating “measures of association or effect.” Finally, the impact of removal of an exposure on the outcome is evaluated by computing “measures of potential impact.” In general, measures of disease frequency are needed to generate measures of association, and both these are needed to get measures of impact. There is some overlap between these measures, and terminology is poorly standardized.
Measures of Disease Frequency

- **Incidence** (I): Measures *new* cases of a disease that develop over a period of time.
 - Very helpful for etiological/causal inference
 - Difficult to estimate
 - Implies follow-up over time (i.e. cohort design)

- **Prevalence** (P): Measures *existing* cases of a disease at a particular point in time or over a period of time.
 - Very helpful for quantifying disease burden (e.g. public health)
 - Relatively easy to estimate
 - Implies a cross-sectional design
Prevalence vs. Incidence

Prevalence can be viewed as describing a pool of disease in a population. Incidence describes the input flow of new cases into the pool. Deaths and cures reflect the output flow from the pool.

Prevalence = Incidence Rate X Average Duration
Incidence measures (big picture)

Incidence of disease = frequency of occurrence

\[\frac{\text{amount of opportunity}}{\text{for its occurrence}}\]

Cumulative Incidence = "amount of opportunity" is number of persons at risk

Incidence density = "amount of opportunity" is amount of the population-time in the study base

Adapted from OS Miettinen, Epidemiological research: terms and concepts, Springer, 2011
Cumulative Incidence

$$CI = \frac{I}{N}$$

I = # of new cases during follow-up
N = # of disease-free subjects at start of follow-up (they should be ‘at risk’)

Measures the frequency of addition of new cases of disease and is always calculated for a given period of time (e.g. annual incidence)

- Must always state the time period (e.g. attack “rate” calculated for an outbreak)
- Most common way to estimate risk
- Not great if population changes a lot (e.g. attrition, competing risk)
Example

Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy

Graziano Onder, MD, PhD1; Giovanni Rezza, MD2; Silvio Brusaferro, MD3

The fatality rate was defined as number of deaths in persons who tested positive for SARS-CoV-2 divided by number of SARS-CoV-2 cases.

- 1625 deaths
- 22,512 persons with confirmed COVID-19 in Italy
- CFR = 1625/22512 = 7.2%
- 95% confidence interval: 6.9% to 7.6%

Incidence density (incidence rate)

\[IR = \frac{I}{PT} \]

I = # of new cases during follow-up
PT = total time that disease–free individuals in the cohort are observed over the study period
(total person-time experience of the cohort).

Describes how rapidly health events are occurring in a population of interest

Dictionary: “The average person-time incidence rate” [Porta, 2008]

Measures the rapidity with which new cases are occurring in a population

Most sophisticated form of measuring incidence [most difficult as well]
- Accounts for losses, competing risks, dynamic turn-over, differential follow-up time, changes in exposures over time
- *hazard function (in survival analysis) is the event rate at time \(t \) conditional on survival until time \(t \) [hazard rate is something like an instantaneous rate]
Compassionate Use of Remdesivir for Patients with Severe Covid-19

53 patients got the drug; follow-up was to continue through at least 28 days after the beginning of Rx with remdesivir or until discharge or death.

7 patients died

Cumulative incidence: 7/53 (13%)

Incidence density: 7/1120 person-days

= 0.63 deaths per 100 person-days

= 6.3 deaths per 1000 person-days
Summary: Risk vs Rate

<table>
<thead>
<tr>
<th>RISK</th>
<th>RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.g. Cumulative incidence</td>
<td>E.g. Incidence density</td>
</tr>
<tr>
<td>Proportion (always between 0 and 1)</td>
<td>Non-negative and no upper bound</td>
</tr>
<tr>
<td>Probability that an individual will develop a disease during a specific period</td>
<td>Describes how rapidly new events occur in a specific population</td>
</tr>
<tr>
<td>Use for individual prognosis</td>
<td>Use for etiological comparisons</td>
</tr>
<tr>
<td>More assumptions</td>
<td>Fewer assumptions</td>
</tr>
<tr>
<td>Cannot handle variable follow-up times, attrition, competing risks</td>
<td>Can handle variable follow-up times, attrition, competing risks</td>
</tr>
<tr>
<td>Easy to compute in a fixed cohort with few losses; but gets difficult with open populations with longer follow up and losses</td>
<td>Can be computed even with open populations with losses and longer follow up</td>
</tr>
</tbody>
</table>
Risk vs Odds

Thus, it is possible to calculate the risk and the odds of developing the disease during the study period as:

Risk = \frac{10}{100} = 0.10 = 10\%

Odds of disease = \frac{10}{90} = 0.1\overset{1}{\frown} = 11\%

Dictionary: “Odds is the ratio of the probability of occurrence of an event to that of non-occurrence.” [Porta, 2008]
Prevalence

- Measures existing cases of a health condition
 - Inherently biased towards inclusion of “survivors”

- Primary outcome of a cross-sectional study (e.g. sample surveys)

- Two types of Prevalence
 - Point prevalence
 - Period prevalence
Point Prevalence

\[P = \frac{C}{N} \]

\(C \) = \# of observed cases at time \(t \)
\(N \) = Population size at time \(t \)

Measures the frequency of disease at a given point in time

Dictionary: “A measure of disease occurrence: the total number of individuals who have an attribute or disease at a particular time (or period) divided by the population at risk of having the disease at that time or midway through the period. It is a proportion, not a rate.” [Porta 2008]
Period Prevalence

\[PP = \frac{C + I}{N} \]

- C = the # of prevalent cases at the beginning of the time period.
- I = the # of incident cases that develop during the period.
- N = size of the population for this same time period.

Example: one year prevalence: proportion of individuals with the disease at any time during a calendar year. It includes cases arising before and during the year. Denominator is total population during the time period.
April 3rd and 4th, 2020, researchers did serologic testing for SARS-CoV-2 antibodies in 3,330 adults and children in Santa Clara County

Total number of positive cases by antibodies = 50

Crude point prevalence = 50/3330 = 1.5% (95 CI 1.1-2.0%)
Prevalence

Useful for:

- Assessing the health status of a population.
- Planning health services.
- Often the only measure possible with chronic diseases where incident cases cannot be easily detected (e.g. prevalence of hypertension)

Not very useful for:

- Identifying risk factors (etiology): confusion between risk factors for survival vs. risk factors for developing disease
- Makes no sense for conditions that are acute and short duration (e.g. diarrhea)

Kleinbaum et al. ActivEpi
What factors can affect prevalence?

Prevalence

Factors affecting prevalence:*
- Longer duration
- Prolongation of life without cure
- Increased incidence
- In-migration of cases
- Out-migration of healthy people
- In-migration of susceptible people
- Better diagnosis/reporting

Factors affecting shorter duration:*
- Shorter duration
- High case fatality
- Decreased incidence
- In-migration of healthy people
- Out-migration of cases
- Improved cure rates

Source: Beaglehole, 1993
Be critical when reviewing results

- Crude rates
- Confounding factors
- Confidence intervals
Crude vs. adjusted rates

- Crude rates are useful, but not always comparable across populations
- Example: crude death rate in Sweden is higher than in Panama. Why?
- Confounding by age
- Age standardization is nothing but adjustment for confounding by age

Rothman KJ, 2002
Let’s imagine the true population seroprevalence of Covid-19 in Santa Clara county is 5% (population mean).

Let’s say 100 samples were taken in that county and 100 estimates and confidence intervals were constructed.

95% of the intervals will capture the true population prevalence of 5%.
What are 95% confidence intervals?

- The interval computed from the sample data which, were the study repeated multiple times, would contain the true effect 95% of the time

- Incorrect Interpretation: "There is a 95% probability that the true effect is located within the confidence interval."
 - This is wrong because the true effect (i.e. the population parameter) is a constant, not a random variable. Its either in the confidence interval or it's not. There is no probability involved (in other words, truth does not vary, only the confidence interval varies around the truth).

Useful reading: Primer on 95% CI by American College of Physicians
Epidemiology is about identifying associations between exposures and outcomes. To identify any association, exposures and outcomes must first be measured in a quantitative manner. Then rates of occurrence of events are computed. These measures are called “measures of disease frequency.” Once measured, the association between exposures and outcomes are then evaluated by calculating “measures of association or effect.” Finally, the impact of removal of an exposure on the outcome is evaluated by computing “measures of potential impact.” In general, measures of disease frequency are needed to generate measures of association, and both these are needed to get measures of impact. There is some overlap between these measures, and terminology is poorly standardized.
MEASURES OF EFFECT
The famous epi 2 x 2 table!

<table>
<thead>
<tr>
<th></th>
<th>Health outcome positive patients ("Cases")</th>
<th>Health outcome negative patients ("Controls")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated ("Exposed")</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Untreated ("Not exposed")</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>A + C</td>
<td>B + D</td>
</tr>
</tbody>
</table>

COHORT STUDY or RANDOMIZED CONTROLLED TRIAL

Relative risk = \(\frac{A/(A + B)}{C/(C + D)} \)

CASE-CONTROL STUDY

Odds ratio = \(\frac{A/(A + C)}{B/(B + D)} = \frac{A/C}{B/D} = \frac{A \times D}{B \times C} \)
Example: Measures of effect in RCTs

75 patients in HCQ arm
75 patients in standard of care arm

Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial

Wei Tang,1,2 Zhujun Cao,3 Mingfeng Han,4 Zhengyan Wang,5 Junwen Chen,6 Wenjin Sun,7 Yaojie Wu,6 Wei Xiao,6 Shengyong Liu,9 Erzhen Chen,13 Wei Chen,1,2 Xiongbiao Wang,12 Jiuyong Yang,13 Jun Lin,14 Qingxia Zhao,15 Youqin Yan,16 Zhixin Xie,17 Dan Li,18 Yaofeng Yang,19 Leshan Liu,10 Jieming Qu,11 Guang Ning,21 Guochao Shi,1,2 Qing Xie9

DESIGN
Multicentre, open label, randomised controlled trial.

SETTING

PARTICIPANTS
150 patients admitted to hospital with laboratory confirmed covid-19 were included in the intention to treat analysis (75 patients assigned to hydroxychloroquine plus standard of care, 75 to standard of care alone).

INTERVENTIONS
Hydroxychloroquine administrated at a loading dose of 1200 mg daily for three days followed by a maintenance dose of 800 mg daily (total treatment duration: two or three weeks for patients with mild to moderate or severe disease, respectively).

MAIN OUTCOME MEASURE
Negative conversion of severe acute respiratory syndrome coronavirus 2 by 28 days, analysed according to the intention to treat principle. Adverse events were analysed in the safety population in which hydroxychloroquine recipients were
Measures of effect

<table>
<thead>
<tr>
<th></th>
<th>Covid test becomes negative</th>
<th>Covid test does not become neg</th>
<th>Row total (Margins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCQ + standard of care</td>
<td>53</td>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>Standard of care</td>
<td>56</td>
<td>19</td>
<td>75</td>
</tr>
<tr>
<td>Column total (Margins)</td>
<td>109</td>
<td>41</td>
<td>150</td>
</tr>
</tbody>
</table>

Cumulative incidence in HCQ group = 70.6%
Cumulative incidence in SOC group = 74.6%
Risk Ratio = 0.94 (95% CI 0.78, 1.15)
Risk difference = -4%
Odds ratio (OR) = 0.81
Epidemiology is about identifying associations between exposures and outcomes. To identify any association, exposures and outcomes must first be measured in a quantitative manner. Then rates of occurrence of events are computed. These measures are called “measures of disease frequency.” Once measured, the association between exposures and outcomes are then evaluated by calculating “measures of association or effect.” Finally, the impact of removal of an exposure on the outcome is evaluated by computing “measures of potential impact.” In general, measures of disease frequency are needed to generate measures of association, and both these are needed to get measures of impact. There is some overlap between these measures, and terminology is poorly standardized.
MEASURES OF POTENTIAL IMPACT
Measures of potential impact

- Impact of removing exposure in:
 - Exposed people (e.g. only smokers) = attributable risk (also called risk reduction)
 - All people (entire population – made up of both exposed and unexposed people) = population attributable risk
After accounting for background risk, how much excess risk can removal of exposure bring?

Lots of data show ~80% of lung cancer deaths are attributable to smoking (PAR)

Figure 3-2: Szklo and Nieto, Epidemiology Beyond the Basics, 2000
To calculate ‘excess mortality’ in a given period we would look at the number of people who had died over this period, and compare it to the number we would have expected to have died. In other words, it is calculated as:

Excess deaths = Observed number of deaths – Expected number of deaths under normal conditions